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This paper studies deconvolution algorithms for removing the interference caused
by objects near an antenna. Infinitely many time-domain algorithms are consid-
ered, the best of which may compete with frequency-domain methods. Special
care is taken to find a stable deconvolution algorithm that also accommodates the
discontinuity-related numerical noise in standard finite-difference time-domain
data.
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1. INTRODUCTION

This paper studies the removal of electromagnetic interference produced by near-1
scatterers. The numerical examples will roughly represent the removal of interference ca
by a mast, wing tip, or fin that is near a ship or airborne receiving antenna [1-3].

The above-described work will be seen, in Section 3, to reduce to the deconvolutior
the right-hand side of (1) below. This deconvolution could easily be done using Fourier
or Laplace transforms. This paper’s goal, therefore, is to find what may be the best a
native time-domain algorithm. The best time-domain algorithm here will feed one-degr
smoothed data into a first-kind Volterra equation solver [5] that is stable and second-ol
accurate, and for which Richardson extrapolation yields fourth-order accuracy. This al
rithm will also accommodate the discontinuity-related numerical noise in finite-differen
time-domain (FD) data. These properties make the time-domain algorithm competitive v
frequency-domain methods [4].

The central equation of the preferred algorithm will be shown, in Section 3, to be

t t
/ R(S) ds = / Ki(t = 9) fine(S) s, )
0 0
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where R is the signal received after a nearby scatterer interferes with an incident sig
finc- The identity (1) follows directly from the Duhamel theorem [6] about the Heaviside
step responselsy of time-dependent linear systems, such as the Maxwell equations. T
discontinuous kernd{y will be computed here using a standard FD (finite-difference time
domain) method, despite the numerical noise resulting from the discontinuity. This appro
arose from an earlier observation [7] that the standard-FD propagation of discontinui
is useful for linear scattering. This paper and [7] are complementary in that the cen
operator of [7] is a convolution and the central operator here is the deconvolution of (1)

Two prototype problems are defined in Section 2. Section 3 examines an infinite seque
of time-domain algorithms, each of which could solve the prototype problems. The sect
also finds the one algorithm of the sequence that has the best numerical properties. Sec
numerically solves the prototype problems of Section 2 using the chosen algorithm.
conclusion (Section 5) describes the relation of the present work to [7], which together h
two uses for the standard-FD propagation of discontinuous functions. Finally, the Appen
discusses more-realistic problems.

2. TWO PROTOTYPE PROBLEMS

This section’s prototype problems will be solved numerically in later sections. The
problems involve the parameters of an existing antenna [8], sketched in Figs. 1 and 2.
section will define the problems and say what they represent.

There is initially, fort <0, no field in the rectangular domain of Fig. 1. A+0, a
time-dependent field becomes incident uniformly from the right. The electric comp
nent of that field is always perpendicular to the page. The field represents a pulse
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FIG. 1. Scale drawing of a steel disk and the 32 locatior$ Where the total field is received inside the
computational domain.
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is incident from a source that is far from the scatterer. The word “far” conventional
[3] refers to a distance of at least, say, 10 tinigA, whereL is the larger of the di-
ameters of the scatterer and antenna, aigla wavelength typical of the incident field.
The incident field propagates through free space £, and u = o) and scatters from
an insusceptiblei(= o) conducting § < oco) object. The scattering object of the first
prototype problem is the disk of Fig. 1. The total time-dependent electric field is me
sured at eack-marked location in the figure, and it is assumed that the measurements
not perturb the field. This electric field is the subject of all equations and graphs in t
paper.

Let R; () be the field measured at theh x-marked location from the bottom of Fig. 1.
Then this paper’s prototype problems are as follows: Given the total Reldt a single
known location, knowing thaR; was produced by a plane-wave pulse incident from
known direction, and knowing also the location, shape, and compositiandoc) of the
scatterer, one must compute the time trace of the incident gulse

The first prototype problem roughly represents the removal of the electromagnetic
terference from a mast, wing tip, or fin that is nearL/(101)] a ship or an airborne
antenna [1, 2]. In Section 4 the incident pulse is a 1-cycle sinusoid with a 5.45-GHz car
frequency, whose free-space wavelength is approximately the diameter of the steel di:
Fig. 1. Because the wavelength is also about the length okiwmarked intervals in Fig. 1,
this problem represents an existing 32-element phased-array radar antenna [8] that |
wavelength-sized steel pipe located 40 cm in front of it. That pipe adds interference, wt
deconvolution will remove.

The second prototype problem has multiple scattering, although only between the ¢
ponents of a scatterer, drawn in Fig. 2. All parts of this problem are the same as those
Fig. 1, except for the scatterers. Notice that the misaligned ellipses of Fig. 2 add asymm
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FIG. 2. Scale drawing of a two-ellipse scatterer that produces multiple scattering.
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to this problem. The ellipses will also be seen to prolong some received signals or ce
ringing. These multiple-scattering effects will be removed by deconvolution in Section -

The Appendix illustrates the stability of deconvolution under large errors in incide
direction. The Appendix also discusses multiple scattering among the antenna elem
(x marks of Figs. 1 and 2), and the use of laboratory data.

3. NUMERICAL METHODS AND THEIR PROPERTIES

The deconvolution problems of Section 2 are linear; therefore, they can be solved in
frequency domain [4]. This section will consider infinitely many time-domain alternative
(3), and will examine their numerical properties to find the best one (3b).

Linear time-domain systems, such as the Maxwell equations, can usually be descr
by the Duhamel theorem [6], which is the basis for this paper's work. This paragra
will sketch a verification that the Duhamel theorem does apply here. Then the theor
will be used. To begin: The problems of Section 2 are described by the Maxwell eqt
tionsV-D=V.-B=V xE+3B=V x H-08D— J=0 and the constitutive relations
D=¢E, J=0E, andB=uoH. The parametersando are functions in the—y plane,
but 1o is a constant. All three parameters are independehtTfie only nonzero electric
component of the field of the two-dimensional problems of Section 2 therefore satisfie:

0ZE + 97E = puod (e E + 0 E). 2)

An existing proof [6] of the Duhamel theorem is then easily modified to accommodate t
8§E term of (2). To connect that proof with the present work, however, the antenna &
its nearby scatterer are both located rigarin the notation of [6], wheréis exceedingly
large. The Duhamel theorem then applies rigorously to the problems of Section 2.

The Duhamel theorem and its immediate generalizations yield infinitely many integ
equations for sufficiently smooth incident fielis.. The equations are

t

R() = / Ks(t —s) finc(s) ds (3a)
JO
t

3 *R(t) = / Ku(t — s) fine(s) ds (3b)
0
t

3 °R(t) = / Kin(t — 9) finc(s) ds, (3¢)
0

whered; 2 is the antiderivative operat@R(t) = fot R(s) ds composed with itself. The
kernels of (3) denote the delta-function resporisg,the Heaviside responsky, and the
ramp-function{H(t)] responseK,y, at the location where a received sigiabs measured.
The phrase “delta-function response” above refers to the response of (2) to an incic
field that is a Dirac delta function. For linear hyperbolic systems, such as the time-dom
Maxwell equations, a propagation-of-singularities argument [6] showsthaself has a
delta-function component. However, [7] shows that a bounded) @pproximation ofs
can be propagated usefully using standard FB;|bf (3a) is computed using such &g,
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approximation, then the entire sequence (3a), (3b), (3cis of first-kind Volterra integral
equations (forfj,c) with convolution kernels.

We now consider a numerical property that will help us identify the best algorithm in (3
Linz [5] showed that if the left-hand side of a general first-kind Volterra equation

t
L(t):/ K(t,s)f(s)ds (4)
0

is perturbed by an amoumtL, then the resulting perturbation of the solution of (4) is, in
what is probably the best case,

Af = O(h™tAL). (5)

That ill-posedness result (5) favors equations that have smooth left-hand sides. Co
quently, (3a) is not the best algorithm of (3).

We still have infinitely many algorithms—(3b), (3c),—the best of which will be
found only after a method for solving first-kind equations is described. This method w
be described as it applies to the eventually preferred algorithm (3b), but the same me
can be easily modified for all algorithms in (3).

Direct methods for solving first-kind equations (4) follow immediately from discretizatio
of the integral. The midpoint-rule discretization of (3b) yields

[0"R],
(K (2)]

fo = [hK:(g)] <[ath}n —h> Kuni fi>, (6b)

f, = (6a)

i=1

where
fo = finc[(n = 3)h] ()
Kin = Ku[(n = 2)h] (7b)
[0'R], = /0 " R(s) ds (7¢)
are stepsizérdiscretizations. If
IhKn(h/2)| < min(| fal, |[37R],|) (8)

then the numerator of (6b) is a small difference of large numbers, and significant digits
thereby lost. Algorithm (3b) is therefore preferred because a propagation-of-singulari
argument [6] shows thd(0™) # 0, whereas the integral kernels of (3c), (3el)seqare
continuous and zero at=0. (Their zeros are first order fd¢;, second order foKzy,
and so forth.) This issue has theoretical significance for the left-hand side of (8) and
generalizations foKy andK;zy. In corroboration, numerical experiments have shown the
the above-described loss of significant digits causes a rapid numerical blowup for the f
order-zero case (3c). Equation (3b) therefore yields the best of the infinitely many algoritt
that follow from (3). (An imperfection of (3b) is studied in the last paragraph of Section ¢
The sentence that contains (8) also yields a rough lower bouhdr@mely, there should be
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at most a few time stepsat which|h Ky (h/2)| is much less than bottf,| and|[9; *R]x|.
But clearly,h should also be significantly briefer than the time scales typicgf dR, K,
and f. We therefore have approximate upper and lower bounds on the sthpsize
The preferred algorithm (3b) will now be improved. Linz [5] has shown that the error «
the midpoint-rule computation (6)—(7) is
2

h
fexact— fn = th?n + O(h4)» (9)

whereg, is independent dii. This allows for Richardson extrapolation [5], yielding fourth-
order accuracy. Equation (9) also shows that the computation (6)—(7) is stdble- &
These useful properties are the reasons that the midpoint rule is used in (5)—(8) to selec
best algorithm.

These are the numerical properties of the deconvolution algorithm (3b): Th&kdata
first smoothed using integration in (3b). Equations (4) and (5) show that the algorithr
ill-posedness is thereby reduced. The smoothed @atR are fed into a routine (6) that
is seen in (9) to be stable and second-order accurate. Richardson extrapolation, bast
(9), then yields fourth-order accuracy. For any error toleranceQitié) method allows a
largerh to be used. A largen will further reduce sensitivity to perturbations of the data,
according to (5). It will also preserve significant digits, according to (8) F&ltould not be
allowed to far exceed either bound described in the first three or four sentences before

We turn now to purely computational issues. To begin, if the discontinuous Kérnel
(3b) is computed with standard FD, then the compwgdwill include a large amount of
purely numerical noise. We will briefly consider two alternatives to such a noisy computati
of Ky; then, in the next paragraph, we will see how to easily overcome the noise. Fi
the numerical noise would be much smaller witg computed with an essentially non-
oscillatory (ENO) method [9, 10]. The adaptive stencils of ENO methods do, however, m:
their results nonlinear, and perhaps inappropriate for the deconvolution of linear syste
Standard FD is used here instead of an ENO method for that reason. A second altern
to the standard-FD propagation of the discontinuldyss to propagate the ramp function
tH(t) and then differentiate, as iy (t) = 9; Ktn (7). But numerical noise would then be
magnified by differentiation. The kern&ly is therefore, for simplicity, computed directly
by propagating Kt) using standard FD.

The numerical noise oKy is easily overcome. When the grid properly resolves the
scatterer, this noise will have a regular number of points per oscillation, 10 to 20 in 1
computations of Section 4. The results of those computations, therefore, are smoothed
a 40-point filter®

ot ™ d
— t + s)ds, 10
TM + tm /tm ( ) ( )
wheret,, = 1%, Ty, = 20h, and f is a generic function. That filter is also a convolution
D x f =/ Pt —s)f(s)ds (11a)
() = (Tw + tm) "H(E + tm)H(Tu — t) (11b)

for all t € (—o0, 00). The equation

3 M@ * R) = (@ * Kpy) * finc (12)
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then follows from (3b) and elementary calculus [11]. That equation is an identity. But t
next, and final, computational issue will lead to an approximation of (3b) and (12).

The wavefront of an FD-computed pulse travels with the superluminal velog{L
because of the nature of time stepping in a CFL-stabilized computation. The filtered pu
(® % R) and(® * Ky) are therefore truncated as

(@ % Kpy) > (@ % Ky)H(t) (13a)
(@ % R) > (% RH(1), (13b)

wheret is now measured relative to the analytically determined wavefront-arrival time
each receiver. (That arrival time is the same for all receivers of Figs. 1 and 2. For m
complicated media, the arrival time can be computed using characteristics or the eik«
equation [6].) The quantities on the right-hand sides of (13a) and (13b) replace, respectiy
Ky andRin (6). Notice that the truncation of the superluminal FD-compitgéssures that
the right-hand side of (13a) will be discontinuous &t0. This is beneficial according to (8).
It may also be the only known computational advantage of the superluminal feature of C
stabilized FD. If, howevelK were known exactly by analytical means then a propagatior
of-singularities argument [6] would prove thidt; already is discontinuous. Regardless of
whetherKy is computed exactly or with filtered-then-truncated FD, its discontinuity e
t =0 will yield the numerical benefits described by (5) and (8).

The main disadvantage of truncation (13) is its approximation to what would otherwise
an identity (9). It has been proven [11], however, that the truncation errors of (13) vanist
h — 0, provided the superluminal parts of the FD-compueahd Ky tend to O pointwise
ash — 0.

4. NUMERICAL SOLUTIONS

This paper’s prototype problems are defined in Section 2. The incident fields are @
cycle 5.45-GHz sinusoidal pulses. That frequency is the midpoint of the frequency rang
the existing antenna [8] modeled here by these problems. The corresponding waveleng
5.5 cm, which can be compared in Fig. 1 with the 3-cm elemergymbol) spacing and
the 6-cm disk diameter. The steel disk has a conductivity 6fSIth and its permittivity is
that of free space. The remainder of Fig. 1 has free-space properties.

Fields were computed with a standard-FD program that was written [12] in accordal
with an early manuscript version of [13], but whose absorbing boundary condition w
replaced [12] with a Berenger PML [14]. The FD program computed electric fields tf
were always perpendicular to the plane of Fig. 1. The program was second-order accl
in space and time. It was run with CEL1/2 on a 2840« 5232 spatial grid, yielding 4735
points per carrier-frequency period. This grid was used to compute the one-cycle-sinu:
responseg; (t) of Fig. 3, and to computi&y.

Figure 3 shows the signaR,(t), Ru(t), ..., Rsa(t) that are received at every other
location in Fig. 1. These signals are vertically offset in Fig. 3. The largest and small
offsets are used, respectively, for the top and next-to-bottemarked locations in Fig. 1.
The steel disk casts a shadow whose darkest pBipisf Fig. 3. Note also the delayed-wave
components of the signals.

The integral kerneKy and each received sign&; were filtered, truncated, and time
shifted as in (10)—(13). The results were fed into the second-order-accurate routine (6)-
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FIG. 3. Total signal received at every othermarked location in Fig. 1.

Each received signal was deconvolved separately from the 31 other signals, resultin
32 independent reconstructions of the incident figld. Figure 4 shows a typicaD(h?)
reconstruction. This uses the signal received at the &5ttom the bottom of Fig. 1. The
incident signal and its reconstruction almost overlap.

Figure 5 shows that each of the 32 second-order-accurate reconstructifypgcfirve
with circles) reproduces thie,, norm of the one-cycle sinusoifi,. (boldface line) within
2%. TheL, norm (not graphed), whose square is proportional to the energy of a pulse
reproduced to within 1.3%.
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FIG. 4. Reconstruction of the incident signél., using one received signal from Fig. 1.
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The predominant errors of the€i(h?) results are barely evident in the figures. To find
the predominant reconstruction error in Fig. 4, look along the left-hand vertical axis fo
brief, diagonal segment near 0.15 V/m. That segment is difficult to find. The predomin
errors of all 31 otheO(h?) reconstructions also are difficult to find in their graphs (no:
presented). Richardson extrapolation [5] did further reduce the barely evident numer
errors of all 32 reconstructions.

The computations just described for the disk of Fig. 1 were redone for the two-ellig
scatterer of Fig. 2. Figures 6 and 7 show, respectively, the reconstructions for the
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FIG. 6. Reconstruction of the incident signél., using a received signal from Fig. 2.
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FIG. 7. Reconstruction of the incident signél., using a multiply scattered signal from Fig. 2.

and 21stx-marked locations from the bottom of Fig. 2. Those locations were chos
because their received signals illustrate prolongation (Fig. 6) and ringing (Fig. 7) cause
multiple scattering. The incident and reconstructed signals almost overlap in Figs. 6 an
The predominant errors of 31 of the 32 second-order-accurate reconstructions are &
confined to the first few data points and are barely evident in the graphs. Thus, time-don
deconvolution has removed the multiple-scattering effects of the two-ellipse scatterer
31 of 32 cases. The single exception will now be studied.

The only failed reconstruction is for the 13thfrom the bottom of Fig. 2 (two ellipses).
That one reconstruction (not graphed) oscillates with exponentially increasing amplitude
is typical of an unstable computation. The instability is evidently caused by lost significe
digits, associated with condition (8). In particuldrKy(h/2)|/ min(| f|, |, 1R]) is 2.7%
in this computation at the time (1.37107*! s) when divergence first becomes apparen
at the 13thx. That quotient is no less than 7.2% at the same time in the 31 converg
reconstructions for Fig. 2. That concludes the numerical evidence that (8) describes the
failure. Therefore, if it were crucial to have a convergent reconstruction based on the sic
received at the 13tk from the bottom of Fig. 2, then (8) suggests that a lalgginould be
tried in (6)—(7). In any case, the 63 other reconstructions for Figs. 1 and 2 were succes:

5. CONCLUSION

This paper arose from [7]. There, the Kronecker-delta-function respnseas com-
puted with standard FD and then used in (3a) to propagate other incidentffigld3ther
reference pulses were considered as alternatives§;tdout [7] concluded thak; was
the simplest reference pulse to use. Thkis,and (3a) are best for the (convolutional)
forward-propagation problem of [7], arlly and (3b) are best for the (deconvolutional)
reconstruction problem of the present paper. These two methods, (3a) and (3b), are u



TIME-DOMAIN DECONVOLUTION 303

despite the fact that their integral kernels are standard-FD responses to discontinuous
dent pulses. The time-domain-deconvolution method (3b) is, furthermore, staly afid
accurate—it isO(h*) accurate after Richardson extrapolation—and it consequently m.
compete with frequency-domain methods [4].

The purely numerical noise in a computed Heaviside resp#iseequired a simple
filter. The filtered result was also truncated to restore a discontinutty=# that tends to
conserve significant digits (8). The filtering and truncation would have been unneces:
were Ky known exactly. The resulting algorithm yielded almost imperceptible errors
63 of 64 cases. The exceptional case is evidently explained by (8), which also sugge:
remedy.

The Appendix will discuss modifications for more-practical problems.

APPENDIX: GENERALIZATIONS

This appendix addresses three practical problems: First, the known angle of incide
may be in error. Second, the received signal may be affected by multiple scattering am
antenna elements. Finally, one may want to use laboratory data.

We will start with errors in the angle of incidence. The sensitivity to these errors w
tested by looking at received fields caused by 1-cycle sinusoids that were incident fi
5° and 45 below the normal to the antenna of Fig. 1. The incident signalsfang 45
incidence were reconstructed using tefor 0° incidence, thereby introducing errors. All
64 reconstructions converged, with tB&h?) andO(h*) reconstructions practically indis-
tinguishable. Figure 8 illustrates the three distinct types of reconstructed signals obser
The types involve prolongation, numerical noise, and ringing. The reconstructed signals
of course, differ from the actual incident field because of the intentional errors in angle. |
an arrangement other than Fig. 1, the effect of errors in angle would depend on the

T T T T v ] L]

e AVan

e

>

i 9 VJ,\/

“

)

¢ 22

£ ABOVE: 5-degree Incidence

<]

=]

g BELOW: 45-degree Incidence

I 5 /\/ ——

z

c

o 9

©

8

-1 22
/\.'r. 1 . . 1 R . 1 . .
0 3e-10 6e-10 9e-10 1.2e-09

Time (sec)

FIG. 8. Typical reconstructions of the one-cycle sinuséid when there are“sand 45 errors in the angle of
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at hand. Figure 8, however, illustrates stability under large errors. We now turn to multi
scattering.

The prototype problems’ most idealized assumption is that the antenna measures
field nonperturbatively. This assumption neglects the important practical effect of multij
scattering among the 32 elementsrfarks) of Figs. 1 and 2. One way to simulate multiple
scattering would be to have an imperfect absorber in a small area neaxeaetked
element, and perhaps a small conductor behind each imperfect absorber. In any cas
standard-FD response would still be a linear operator acting on the incident fields. The a
ysis in this paper would usually apply without change to any such linear system, includ
all that have multiple scattering.

We finally consider what could be done with laboratory data. Heaviside-step pulses
problematical in the laboratory, so it is likely thidt; would have to be inferred from other
measurements. To remove interference in a frequency hang [wvax ], one would first
propagate a physical reference pufsg whose spectrum coverafin, wmax ] and whose
risetime is« 2 /w. Or f could be a suitable linear combination of narrow-band pulse:
In either case, one would then solve (3b) numericallyKer using the physical received
signalsR resulting from the knowrfi,c = fret. (The roles ofKy and f here are reversed
from before.) If thisKy were truncated as in (13a), then the result could presumably |
used as usual to reduce interference in the frequency hagd womax -
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